152 research outputs found

    Vitronectin at sites of cell-substrate contact in cultures of rat myotubes

    Get PDF
    Affinity-purified antibodies to the serum glycoprotein, vitronectin, were used to study sites of cell-substrate contact in cultures of rat myotubes and fibroblasts. Cells were removed from the substrate by treatment with saponin, leaving fragments of plasma membrane attached to the glass coverslip. When stained for vitronectin by indirect immunofluorescence, large areas of the substrate were brightly labeled. The focal contacts of fibroblasts and the broad adhesion plaques of myotubes appeared black, however, indicating that the antibodies had failed to react with those areas. Contact sites within the adhesion plaque remained unlabeled after saponin-treated samples were extracted with Triton X-100, or after intact cultures were sheared with a stream of fixative. These procedures expose extracellular macromolecules at the cell-substrate interface, which can then be labeled with concanavalin A. In contrast, when samples were sheared and then sonicated to remove all the cellular material from the coverslip, the entire substrate labeled extensively and almost uniformly with anti- vitronectin. Extracellular molecules associated with substrate contacts were also studied after freeze-fracture, using a technique we term "post-release fracture labeling." Platinum replicas of the external membrane were removed from the glass with hydrofluoric acid to expose the extracellular material. Anti-vitronectin, bound to the replicas and visualized by a second antibody conjugated to colloidal gold, labeled the broad areas of close myotube-substrate attachment and the nearby glass equally well. Our results are consistent with the hypothesis that vitronectin is present at all sites of cell-substrate contact, but that its antigenic sites are obscured by material deposited by both myotube and fibroblast cells

    Robust LHC Higgs Search in Weak Boson Fusion

    Full text link
    We demonstrate that an LHC Higgs search in weak boson fusion production with subsequent decay to weak boson pairs is robust against extensions of the Standard Model or MSSM involving a large number of Higgs doublets. We also show that the transverse mass distribution provides unambiguous discrimination of a continuum Higgs signal from the Standard Model.Comment: 12p, 2 figs., additional comments on backgrounds, version to appear in PR

    Light Stop NLSPs at the Tevatron and LHC

    Full text link
    How light can the stop be given current experimental constraints? Can it still be lighter than the top? In this paper, we study this and related questions in the context of gauge-mediated supersymmetry breaking, where a stop NLSP decays into a W, b and gravitino. Focusing on the case of prompt decays, we simulate several existing Tevatron and LHC analyses that would be sensitive to this scenario, and find that they allow the stop to be as light as 150 GeV, mostly due to the large top production background. With more data, the existing LHC analyses will be able to push the limit up to at least 180 GeV. We hope this work will motivate more dedicated experimental searches for this simple scenario, in which, for most purposes, the only free parameters are the stop mass and lifetime.Comment: 31 pages, 11 figures; v2: added minor clarifications and reference

    Quark-Gluon Matter

    Get PDF
    A concise review of the experimental and phenomenological progress in high-energy heavy-ion physics over the past few years is presented. Emphasis is put on measurements at BNL-RHIC and CERN-SPS which provide information on fundamental properties of QCD matter at extreme values of temperature, density and low-x. The new opportunities accessible at the LHC, which may help clarify some of the current open issues, are also outlined.Comment: Minor changes to text. New refs. included. Updated figures with final dat

    The Status of GMSB After 1/fb at the LHC

    Full text link
    We thoroughly investigate the current status of supersymmetry in light of the latest searches at the LHC, using General Gauge Mediation (GGM) as a well-motivated signature generator that leads to many different simplified models. We consider all possible promptly-decaying NLSPs in GGM, and by carefully reinterpreting the existing LHC searches, we derive limits on both colored and electroweak SUSY production. Overall, the coverage of GGM parameter space is quite good, but much discovery potential still remains even at 7 TeV. We identify several regions of parameter space where the current searches are the weakest, typically in models with electroweak production, third generation sfermions or squeezed spectra, and we suggest how ATLAS and CMS might modify their search strategies given the understanding of GMSB at 1/fb. In particular, we propose the use of leptonic MT2M_{T2} to suppress ttˉt{\bar t} backgrounds. Because we express our results in terms of simplified models, they have broader applicability beyond the GGM framework, and give a global view of the current LHC reach. Our results on 3rd generation squark NLSPs in particular can be viewed as setting direct limits on naturalness.Comment: 44 pages, refs added, typos fixed, improved MC statistics in fig 1

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Measurement of charged particle multiplicities in pppp collisions at s=7{\sqrt{s} =7}TeV in the forward region

    Get PDF
    The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of s=7{\sqrt{s} =7}TeV in different intervals of pseudorapidity η\eta. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the η\eta ranges 2.5<η<2.0-2.5<\eta<-2.0 and 2.0<η<4.52.0<\eta<4.5. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of η\eta. In general, the models underestimate the charged particle production

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore